Security News :: Информационно-аналитическое издание по техническим средствам и системам безопасности
Поиск Контакты Карта сайта
Security News :: информационно-аналитическое издание по техническим средствам и системам безопасности
Security News
Security Focus

Услуги размещения публикаций на сайте Security News
 
 Газета 
 Статьи 
 Зарубежные новости 
 Под знаком PR 
 Новости 
 События отрасли 
 Дайджест СМИ 
 Фоторепортажи 
 Книги 

Получайте новости Security News через Telegram

Получайте новости Security News через Telegram. Это самый оперативный способ читать их с любого устройства.



Security News




  • игровой журнал
  • лечение наркомании

Библи видеонаблюдения - 3
Газета "Security News" / Статьи по системам безопасности / Российские публикации

Камеры видеонаблюдения под прицелом лазеров (часть 2)


10.03.2008

Несколько ёрнический тон, в котором была выдержана предыдущая публикация по этой теме, мы решили сменить на более наукообразный. Надеемся достучаться таким образом «куда следует». Кстати, а куда следует-то?! В самом деле, кто более всего заинтересован в усилении безопасности систем видеонаблюдения — производители, инсталляторы или рядовые пользователи? Не будем гадать. В любом случае, все они должны быть как минимум информированы.

Цели и задачи эксперимента

  • Определить опытным путем возможность нейтрализации (временного вывода из строя) камер видеонаблюдения лучом относительно маломощного лазера.
  • Рассмотреть вариации условий освещенности и их влияние на результат.
  • Выделить основные группы способов защиты камер.

Объект и средства тестирования

Чтобы камеры изначально имели определенное преимущество в планировавшейся схватке с лазерами, мы остановили свой выбор на заведомо «топовой» модели от Panasonic — WV-CP480: благодаря встроенной функции Super Dynamic III камера эта обладает расширенным в 160 раз относительно обычных камер динамическим диапазоном. Как известно, именно динамический диапазон определяет способность камер выдавать четкое изображение в экстремальных условиях освещения.

Для оцифровки поступающего с камеры изображения использовался один из редакционных ноутбуков, который мы снабдили относительно недорогой (около 2500 руб.) картой ввода композитного видеосигнала AVerTV Hybrid Express.

В качестве средства воздействия на видеокамеру использовалось специально сконструированное устройство, названное нами в традиционном стиле — LaserCamKiller4RG. Прибор четвертого поколения отличается еще более профессиональным дизайном, устойчивостью и точностью наведения. В основу конструкции лег целеуказатель на базе красного лазера с мощностью излучения 1...3 мВт. В ходе эксперимента красный лазер был заменен на 20-милливаттный зеленый, приобретенный под видом «лазерной указки для астрономических исследований». Цены на более мощные лазеры нас несколько удивили...

LaserCamKiller4RG

Для ускорения наведения лазера на цель в конструкции использован штатив с курковой шаровой головкой. А смонтирован прибор на креплении с поворотным лимбом, обычно используемым для установки лазерных уровней: точности обычного штатива для фото- и видеокамер здесь явно недостаточно (это мы определили в предыдущей фазе тестирования).

Измерение расстояний проводилось с помощью лазерного дальномера JJ-Optics Laser RangeFinder 1500 (рабочий диапазон 15...1500 м). Поскольку устройство работает в ИК-диапазоне, в ходе эксперимента возникла идея попробовать в будущем и сам дальномер в качестве «сокрушителя камер». В особенности тому способствовал неплохого качества встроенный семикратный объектив.

Диаметр пятна засветки

В таблице (см.ниже) приводится предварительный расчет диаметра пятна засветки D. По имевшимся у нас данным, типичный угол рассеивания А для лазерных указок и целеуказателей составляет 0,8...1,2 миллирадиана. В дальнейшем примем эту величину равной 1 мрад.

L 50 м 100 м 150 м 1000 м
D 5 см 10 см 15 см 100 см

Из школьного курса тригонометрии мы знаем, что D = L * tgA, где L — расстояние до объекта. Принимая при малых величинах углов tgA = A, упрощаем формулу до вида D = L * A.

По сформированной годами привычке не слишком доверять математическим выкладкам, мы решили самостоятельно проверить величины диаметров пятен засветки от красного и зеленого лазеров. При L=130 м измеренная величина D колебалась в диапазоне 11-12 см. Методика измерения: приклеив скотчем к оконному стеклу лист белой бумаги, специально выделенный сотрудник обрисовывал пятно засветки от попадающего на лист лазера с обратной стороны острым карандашом. С расстояния 130 метров размер пятна оказался соизмеримым с габаритами типичного купола поворотной камеры — таким образом, «накрытие» камер этого типа с помощью лазеров вполне возможно и теоретически, и практически.

Максимальная дистанция

По нашим предположениям, максимальная эффективная дальность действия лазера должна зависеть от нескольких факторов. Вот они — в порядке убывания важности:

  • последствия рассеивания лазерного луча;
  • ограничения, связанные с процессом наведения на объект;
  • свойства и параметры оптики устройств прицеливания.

В данном эксперименте мы ограничили предельную дальность 150 метрами — отчасти и вследствие того, что тесты проводились в условиях плотной застройки мегаполиса. Суть количественной части исследования — определение точности и среднего времени прицеливания на различных расстояниях до объекта в разных условиях освещенности.

Прямой наводкой: в ночных условиях

Испытуемая камера в соответствии с инструкцией по эксплуатации была настроена на монохромную съемку с использованием сверхвысокого динамического диапазона (SDIII). Во избежание приобретения дорогостоящего прибора ночного видения в помещении, где была установлена видеокамера, включена задняя фоновая подсветка — в противном случае прицеливание вызвало бы значительные трудности.

Организационная схема теста выглядела следующим образом. Один из сотрудников редакции — назовем его Стрелок — отдавал по мобильной связи команду включения записи видеосигнала и немедленно приступал к наведению. По окончании прицеливания приводился в действие лазер, о чем незамедлительно извещался второй сотрудник — Наблюдатель. По истечении нескольких секунд видеозапись останавливалась Наблюдателем, и производился экспорт стоп-кадра с засветкой. Замер времени прицеливания производился в программе воспроизведения видеосигнала.

L=140 м, красный лазер 3 мВт, длина волны 650 нм
1 2 3
Попадание
Время прицеливания 37 с 16 с 16 с
4 5 6
Попадание
Время прицеливания 17 с 19 с 10 с
7
Попадание

Увеличенный скриншот наиболее точного попадания

Время прицеливания 14 с
8 9 10
Попадание
Время прицеливания 29 с 16 с 20 с

При стопроцентном попадании луча в кадр среднее время прицеливания составило в данной серии тестов 19 секунд. Возможно, что проведя пару недель в упорных тренировках, Стрелок смог бы снизить этот показатель и до нескольких секунд. Профессиональная подготовка не бывает лишней — даже для того, чтобы стать хорошим злоумышленником или диверсантом.

Интересно, что в ходе прицеливания наблюдался эффект, облегчающий точное наведение луча в объектив — отражение луча от светочувствительной матрицы. Чем точнее наводился лазер, тем ярче становился след отражения в объективе прицела. Подобные способы обнаружения видеокамер и снайперских прицелов уже используются на практике — при этом они способны работать и в полной темноте!

Заменив лазерный источник на зеленый, мы добились того, что детали окружающей реальности стали практически неразличимы. Очарованные столь очевидной разницей в качестве «накрытия», время прицеливания контролировать уже не стали.

L=140 м, зеленый лазер 20 мВт, длина волны 532 нм
1 2 3
Попадание

Прямой наводкой: в пасмурный день

Испытуемая камера была настроена на цветной режим отображения с использованием сверхвысокого динамического диапазона (SDIII). В процессе «пристрелки» от испытаний красного лазера решили отказаться «за явным преимуществом» зеленого.

Скриншот при засветке по центру кадра (L=140 м)

Оказалось, что испытуемая камера в данных условиях способна весьма эффективно отработать засветку! Обратите внимание на разницу в изображении между скриншотами — снятым непосредственно после включения лазера (т.е. при настройке на параметры освещенности кадра до момента засветки)

и спустя несколько секунд, когда в действие вступают механизмы автоматической регулировки диафрагмы и цифровой обработки SDIII.

В ночных условиях закрытие диафрагмы оказывается на руку злоумышленникам. Однако в дневное время диафрагма чаще всего полузакрыта — и потому, вероятнее всего, именно расширенный динамический диапазон камеры не дает возможности полностью засветить поле кадра. По крайней мере, 20-милливаттному лазеру здесь оказалось «нечего ловить». Возможно, проблема в соотношении размеров пятна засветки и объектива (диаметр линзы отчаянно сопротивляющегося Панасоника составляет 13 мм) — значительная часть мощности луча уходит в «молоко».

В следующей серии опытов нужно будет обязательно протестировать систему на меньших расстояниях с дорогой камерой и на тех же самых — с типичной дешевой. Попробуем и разные объективы. И, если удастся, «раскачаем» лазер до 150....200 мВт. Даже если не удастся с его помощью совладать с камерой, от красивого зеленого луча можно будет эффектно прикуривать...

Боковая засветка объектива

Скриншоты еще раз подтвердили уже сформированную нами гипотезу о том, что более мощный лазер эффективнее, а днем с лазерной «пушкой» против SDIII переть бессмысленно.

L=130 м, красный лазер 3 мВт, ночь

L=130 м, зеленый лазер 20 мВт, ночь

L=170 м, зеленый лазер 20 мВт, день

Как защитить камеры?

Диагноз ясен. В условиях недостаточной освещенности лазер представляет определенную опасность — даже для лучших образцов камер видеонаблюдения. А с учетом разработок американских «товарищей» и доступности компонентов систем опасность эта может в любой момент воплотиться на практике. Мы условно разбили возможные методы защиты на три группы. Коллективный разум отраслевых экспертов способен значительно расширить наш список — надеемся на вашу активность, уважаемые! Мнения, соображения и предложения вы можете высказать на форуме нашего веб-сайта.

Использование светофильтров

Цветные фильтры. В комплекте к уровнемеру на базе красного лазера прилагались красные очки. Они навели нас на замечательную мысль... Действительно, красный светофильтр практически избавил нас от пятна зеленого лазера. Луч красного лазера, по идее, может быть задержан синим фильтром. При этом цветные фильтры не помешают работе камер в ночном режиме, поскольку при этом чувствительность смещается в «ближний» ИК-диапазон.

Поляризационные фильтры. Круговая поляризация ослабляет плоско-поляризованный луч лазера незначительно, но в меньшей степени ослабляет и полезный сигнал. Умельцы с форума c-h-a-o-s.com предложили два слоя автомобильной тонировки — возможно, некоторые изготовители тонировочных пленок делают их «поляроидными».

Линейный поляризационный фильтр способен значительно ослабить воздействие лазера, но для этого необходимо «угадать» плоскость поляризации, причем сделать это в течение нескольких секунд. Принципиально возможной видится схема поворотной насадки-фильтра с электроприводом, управляемым видеоаналитикой. У нас же на момент эксперимента оказались в наличии поляризационный фильтр для фотообъектива и модные очки Polaroid. Фильтр работал так себе, зато очки сводили эффект от маломощного красного лазера к минимуму. Но мы уже остановили свой выбор на зеленом...

Использование отражающих поверхностей

Как правило, уличные камеры размещаются в гермокожухах — потому стОит учесть, что направленный в объектив лазерный луч вначале попадает на стекло кожуха. Борис Аристархов предложил использовать эффект тонирования стекла кожуха — по сути, превратив его в полупрозрачное зеркало. Кстати, купола тоже поставляются и в тонированном исполнении — чтобы наблюдаемым не было видно, куда направлен объектив.

Маневрирование камеры на поворотном устройстве

При небольших диаметрах пятна засветки (с расстояния до 50 м — до 50 мм в поперечнике), возможно заложить в программное обеспечение камеры алгоритм, управляемый аналитикой. Математика, «отловив» факт засветки объектива сфокусированным лучом, отводит камеру в сторону на незначительный угол, минимально жертвуя обзором сцены.

***

На этом первая серия опытов над светочувствительными элементами камер видеонаблюдения может считаться завершенной. Пока специалисты вырабатывают консолидированное мнение по данному вопросу и готовят адекватные меры по устранению «дырки в обороне» камер, мы решили заняться сетевыми камерами: по нашим данным, ряд отечественных экспертов уже освоил практику выведения из строя этих относительно новых компонентов систем безопасности. Как обычно, без всякого физического воздействия, силой одного лишь ума и доброй воли. Да-да, именно доброй, поскольку наша с вами задача — исключить вероятность того, чтобы уязвимостями оборудования воспользовались продвинутые злоумышленники.

Кстати, буквально в ходе верстки номера нашим веб-тральщикам удалось выловить любопытную ссылку на запатентованное в США устройство, которое, по мнению авторов, способно «завернуть мозги» любой камере, работающей в режиме автоматической фокусировки.

Компания:  Security Focus (Секьюрити Фокус)


Последние публикации компании:

Новости
Статьи
Передний край

КАМЕРЫ ПОД ПРИЦЕЛОМ ЛАЗЕРОВ

Самый высокотехнологичный из способов борьбы с охранными камерами — интенсивный пучок света, направленный в объектив, вызывает избыточную засветку чувствительного элемента — яркость достигает предельного значения, и изображение оказывается полностью либо частично «залито» однородным пятном. Даже при весьма широком динамическом диапазоне с попавшим в кадр прожектором справятся далеко не все камеры. Сам прожектор, скорее всего, будет виден неплохо. А вот разглядеть под ним фигуру человека с автоматом «узи», связкой гранат, украденным из офиса ноутбуком и чертами лица недавно сбежавшего из психушки маньяка — весьма затруднительно.

ОПЕРАЦИИ КГБ В БРАЗИЛИИ

Спустя некоторое время Security News возвращается к невероятной истории о том, как безопасник из Якутска организовал успешный бизнес на другом конце земного шара. Сегодня наш герой бегло говорит на бразильской разновидности португальского, прекрасно ориентируется в обстановке — и по-прежнему дико занят, полон энергии и сил. И ему по-прежнему везёт. Впрочем, за этим везением стоит чисто русская смекалка, упорный труд и редкий для соотечественников оптимизм.

КАМЕРЫ ПОД ПРИЦЕЛОМ ХАКЕРОВ

Сетевые устройства наступают. Сопротивление бесполезно? Пожалуй, да. Однако, по мнению ряда бывалых экспертов, IP-технике предстоит пройти еще немалый путь, чтобы сравниться с традиционным аналоговым «железом» по самому критичному показателю — надежности. Самое важное на этом пути — накопление опыта эксплуатации, что в охранной технике неотделимо от оперативной работы. Но уже полученные результаты говорят о том, что вместе с сетевыми устройствами линию обороны систем физической охраны теснит и принципиально новый враг — хакер.

RSSRSS
Присоединиться в ТвиттереTwitter
Присоединиться в FacebookTelegram
Присоединиться в LinkedInLinkedIn
Присоединиться в FacebookFacebook
Присоединиться в Google+Google+
Присоединиться ВКонтактеВКонтакте
Присоединиться в YoutubeYouTube
Присоединиться в ОдноклассникиОдноклассники
Присоединиться в LiveJournaLiveJournal

Книжная полка


Системы защиты периметра

Системы защиты периметра




Руководство по подготовке операторов систем видеонаблюдения

Руководство по подготовке операторов систем видеонаблюдения




Охранные системы и технические средства физической защиты объектов

Охранные системы и технические средства физической защиты объектов




Руководство по составлению спецификаций на системы контроля доступа (СКУД)

Руководство по составлению спецификаций на системы контроля доступа (СКУД)



Hits 88377190
9953
Hosts 8299789
1860
Visitors 17293997
4390

34

© ИА «Безопасность Сегодня», 2017-2023.
© «Секьюрити Фокус», 2001-2016.
Свидетельство о регистрации электронного СМИ SECURITY NEWS ЭЛ № ФС 77-33582